/* * Copyright (c) 2010-2012 OTClient * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "binarytree.h" #include "filestream.h" BinaryTree::BinaryTree(const FileStreamPtr& fin) : m_fin(fin), m_pos(0xFFFFFFFF) { m_startPos = fin->tell(); } BinaryTree::~BinaryTree() { } void BinaryTree::skipNodes() { while(true) { uint8 byte = m_fin->getU8(); switch(byte) { case BINARYTREE_NODE_START: { skipNodes(); break; } case BINARYTREE_NODE_END: return; case BINARYTREE_ESCAPE_CHAR: m_fin->getU8(); break; default: break; } } } void BinaryTree::unserialize() { if(m_pos != 0xFFFFFFFF) return; m_pos = 0; m_fin->seek(m_startPos); while(true) { uint8 byte = m_fin->getU8(); switch(byte) { case BINARYTREE_NODE_START: { skipNodes(); break; } case BINARYTREE_NODE_END: return; case BINARYTREE_ESCAPE_CHAR: m_buffer.add(m_fin->getU8()); break; default: m_buffer.add(byte); break; } } } BinaryTreeVec BinaryTree::getChildren() { BinaryTreeVec children; m_fin->seek(m_startPos); while(true) { uint8 byte = m_fin->getU8(); switch(byte) { case BINARYTREE_NODE_START: { BinaryTreePtr node(new BinaryTree(m_fin)); children.push_back(node); node->skipNodes(); break; } case BINARYTREE_NODE_END: return children; case BINARYTREE_ESCAPE_CHAR: m_fin->getU8(); break; default: break; } } } void BinaryTree::seek(uint pos) { unserialize(); if(pos > m_buffer.size()) stdext::throw_exception("BinaryTree: seek failed"); m_pos = pos; } uint8 BinaryTree::getU8() { unserialize(); if(m_pos+1 > m_buffer.size()) stdext::throw_exception("BinaryTree: getU8 failed"); uint8 v = m_buffer[m_pos]; m_pos += 1; return v; } uint16 BinaryTree::getU16() { unserialize(); if(m_pos+2 > m_buffer.size()) stdext::throw_exception("BinaryTree: getU16 failed"); uint16 v = stdext::readLE16(&m_buffer[m_pos]); m_pos += 2; return v; } uint32 BinaryTree::getU32() { unserialize(); if(m_pos+4 > m_buffer.size()) stdext::throw_exception("BinaryTree: getU32 failed"); uint32 v = stdext::readLE32(&m_buffer[m_pos]); m_pos += 4; return v; } uint64 BinaryTree::getU64() { unserialize(); if(m_pos+8 > m_buffer.size()) stdext::throw_exception("BinaryTree: getU64 failed"); uint64 v = stdext::readLE64(&m_buffer[m_pos]); m_pos += 8; return v; } std::string BinaryTree::getString() { unserialize(); uint16 len = getU16(); if(m_pos+len > m_buffer.size()) stdext::throw_exception("BinaryTree: getString failed: string length exceeded buffer size."); std::string ret((char *)&m_buffer[m_pos], len); m_pos += len; return ret; } std::string BinaryTree::getString(uint16 len) { unserialize(); if(m_pos+len > m_buffer.size()) stdext::throw_exception("BinaryTree: getString failed: string length exceeded buffer size."); std::string ret((char *)&m_buffer[m_pos], len); m_pos += len; return ret; } Position BinaryTree::getPosition() { Position ret; ret.x = getU16(); ret.y = getU16(); ret.z = getU8(); return ret; } Point BinaryTree::getPoint() { Point ret; ret.x = getU8(); ret.y = getU8(); return ret; } BinaryTreePtr BinaryTree::makeChild(uint8 type) { BinaryTreePtr child(new BinaryTree(m_fin)); child->setType(type); //children.append(child); return child; } void BinaryTree::setType(uint8 type) { writeU8(0xFE); writeU8(type); } void BinaryTree::writeU8(uint8 u8) { m_buffer.add(u8); } void BinaryTree::writeU16(uint16 u16) { stdext::writeLE16(m_buffer.data(), u16); } void BinaryTree::writeU32(uint32 u32) { stdext::writeLE32(m_buffer.data(), u32); } void BinaryTree::writeString(const std::string& s) { size_t len = s.length(); writeU16(len); m_buffer.grow(m_pos + len); memcpy(&m_buffer[m_pos], s.c_str(), len); m_pos += len; } void BinaryTree::writePos(const Position& p) { if(!p.isValid()) stdext::throw_exception("invalid position passed to BinaryTree::writePos"); writeU16(p.x); writeU16(p.y); writeU8(p.z); } void BinaryTree::writePoint(const Point& p) { if(p.isNull()) stdext::throw_exception("invalid point passed to BinaryTree::writePoint"); writeU8(p.x); writeU8(p.y); } void BinaryTree::writeToFile() { if(!m_fin) stdext::throw_exception("attempt to write binary node to closed file"); /// first write self data m_fin->write(&m_buffer[0], m_buffer.size()); #if 0 /// write children data for(const BinaryTreePtr& child : m_children) child->writeToFile(); #endif }