/* * Copyright (c) 2010-2011 OTClient * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "particleemitter.h" #include "graphics.h" #include #include #include Particle::Particle(const Rect& rect, float vx, float vy, float ax, float ay, float duration, const Color& color, TexturePtr texture) { m_rect = rect; m_ix = rect.x(); m_iy = rect.y(); m_vx = vx; m_vy = vy; m_ax = ax; m_ay = ay; m_color = color; m_texture = texture; m_duration = duration; m_startTicks = g_clock.ticks(); m_finished = false; } Particle::~Particle() { //dump << "deleted"; } void Particle::render() { g_painter.setColor(m_color); if(!m_texture) g_painter.drawFilledRect(m_rect); else { //g_painter.setCompositionMode(Painter::CompositionMode_AdditiveSource); g_painter.drawTexturedRect(m_rect, m_texture); //g_painter.setCompositionMode(Painter::CompositionMode_SourceOver); } } void Particle::update() { ticks_t t = g_clock.ticks() - m_startTicks; // check if finished if(m_duration >= 0 && t > m_duration * 1000) { m_finished = true; return; } //update position m_rect.moveTo(m_ix + (m_vx * t / 1000.0) + (m_ax * t*t / (2.0 * 1000 * 1000)), m_iy + (m_vy * t / 1000.0) + (m_ay * t*t / (2.0 * 1000 * 1000))); } ParticleEmitter::ParticleEmitter() { m_position = Point(0, 0); m_duration = -1; m_burstRate = 1; m_burstCount = 32; m_currentBurst = 0; m_startTicks = g_clock.ticks(); m_finished = false; // particles default configuration. (make them reasonable for user detect missing properties on scripts) m_pMinPositionRadius = 0; m_pMaxPositionRadius = 3; m_pMinPositionAngle = -Fw::pi; m_pMaxPositionAngle = Fw::pi; m_pMinSize = Size(32, 32); m_pMaxSize = Size(32, 32); m_pMinDuration = 0; m_pMaxDuration = 10; m_pMinVelocity = 32; m_pMaxVelocity = 64; m_pMinVelocityAngle = -Fw::pi; m_pMaxVelocityAngle = Fw::pi; m_pMinAcceleration = 32; m_pMaxAcceleration = 64; m_pMinAccelerationAngle = -Fw::pi; m_pMaxAccelerationAngle = Fw::pi; m_pColor = Color(255, 0, 0, 128); m_pTexture = nullptr; } bool ParticleEmitter::load(const OTMLNodePtr& node) { for(const OTMLNodePtr& childNode : node->children()) { // self related if(childNode->tag() == "position") { std::string value = childNode->value(); std::vector split; boost::split(split, value, boost::is_any_of(std::string(" "))); if(split.size() == 2) m_position = Point(Fw::safeCast(split[0]), Fw::safeCast(split[1])); } else if(childNode->tag() == "duration") m_duration = childNode->value(); else if(childNode->tag() == "burstRate") m_burstRate = childNode->value(); else if(childNode->tag() == "burstCount") m_burstCount = childNode->value(); // particles generation related else if(childNode->tag() == "particle-position-radius") { m_pMinPositionRadius = childNode->value(); m_pMaxPositionRadius = childNode->value(); } else if(childNode->tag() == "particle-min-position-radius") m_pMinPositionRadius = childNode->value(); else if(childNode->tag() == "particle-max-position-radius") m_pMaxPositionRadius = childNode->value(); else if(childNode->tag() == "particle-position-angle") { m_pMinPositionAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; m_pMaxPositionAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; } else if(childNode->tag() == "particle-min-position-angle") m_pMinPositionAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-max-position-angle") m_pMaxPositionAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-velocity") { m_pMinVelocity = childNode->value(); m_pMaxVelocity = childNode->value(); } else if(childNode->tag() == "particle-min-velocity") m_pMinVelocity = childNode->value(); else if(childNode->tag() == "particle-max-velocity") m_pMaxVelocity = childNode->value(); else if(childNode->tag() == "particle-velocity-angle") { m_pMinVelocityAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; m_pMaxVelocityAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; } else if(childNode->tag() == "particle-min-velocity-angle") m_pMinVelocityAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-max-velocity-angle") m_pMaxVelocityAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-acceleration") { m_pMinAcceleration = childNode->value(); m_pMaxAcceleration = childNode->value(); } else if(childNode->tag() == "particle-min-acceleration") m_pMinAcceleration = childNode->value(); else if(childNode->tag() == "particle-max-acceleration") m_pMaxAcceleration = childNode->value(); else if(childNode->tag() == "particle-acceleration-angle") { m_pMinAccelerationAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; m_pMaxAccelerationAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; } else if(childNode->tag() == "particle-min-acceleration-angle") m_pMinAccelerationAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-max-acceleration-angle") m_pMaxAccelerationAngle = (childNode->value() * Fw::pi / 180.0) - Fw::pi; else if(childNode->tag() == "particle-duration") { m_pMinDuration = childNode->value(); m_pMaxDuration = childNode->value(); } else if(childNode->tag() == "particle-min-duration") m_pMinDuration = childNode->value(); else if(childNode->tag() == "particle-max-duration") m_pMaxDuration = childNode->value(); else if(childNode->tag() == "particle-size") { std::string value = childNode->value(); std::vector split; boost::split(split, value, boost::is_any_of(std::string(" "))); if(split.size() == 2) { m_pMinSize = Size(Fw::safeCast(split[0]), Fw::safeCast(split[1])); m_pMaxSize = Size(Fw::safeCast(split[0]), Fw::safeCast(split[1])); } } else if(childNode->tag() == "particle-min-size") { std::string value = childNode->value(); std::vector split; boost::split(split, value, boost::is_any_of(std::string(" "))); if(split.size() == 2) { m_pMinSize = Size(Fw::safeCast(split[0]), Fw::safeCast(split[1])); } } else if(childNode->tag() == "particle-max-size") { std::string value = childNode->value(); std::vector split; boost::split(split, value, boost::is_any_of(std::string(" "))); if(split.size() == 2) { m_pMaxSize = Size(Fw::safeCast(split[0]), Fw::safeCast(split[1])); } } else if(childNode->tag() == "particle-color") m_pColor = childNode->value(); else if(childNode->tag() == "particle-texture") m_pTexture = g_textures.getTexture(childNode->value()); } return true; } void ParticleEmitter::render() { for(auto it = m_particles.begin(), end = m_particles.end(); it != end; ++it) (*it)->render(); } void ParticleEmitter::update() { ticks_t elapsedTicks = g_clock.ticks() - m_startTicks; // update particles for(auto it = m_particles.begin(), end = m_particles.end(); it != end;) { const ParticlePtr& particle = *it; if(particle->hasFinished()) { it = m_particles.erase(it); continue; } particle->update(); ++it; } // check if finished if(m_duration >= 0 && elapsedTicks > m_duration * 1000) { // stop emitting but only self remove when there are no particles left if(m_particles.size() == 0) m_finished = true; return; } int currentBurst = elapsedTicks / 1000.0 / m_burstRate + 1; for(int b = m_currentBurst; b < currentBurst; ++b) { // every burst created at same position. float pRadius = Fw::randomRange(m_pMinPositionRadius, m_pMaxPositionRadius); float pAngle = Fw::randomRange(m_pMinPositionAngle, m_pMaxPositionAngle); Point pPosition = Point(-pRadius * cos(pAngle), pRadius * sin(pAngle)); for(int p = 0; p < m_burstCount; ++p) { Size pSize = Size(Fw::randomRange(m_pMinSize.width(), m_pMaxSize.width()), Fw::randomRange(m_pMinSize.height(), m_pMaxSize.height())); float pDuration = Fw::randomRange(m_pMinDuration, m_pMaxDuration); // particles initial velocity float pVelocity = Fw::randomRange(m_pMinVelocity, m_pMaxVelocity); float pVelocityAngle = Fw::randomRange(m_pMinVelocityAngle, m_pMaxVelocityAngle); // particles initial acceleration float pAcceleration = Fw::randomRange(m_pMinAcceleration, m_pMaxAcceleration); float pAccelerationAngle = Fw::randomRange(m_pMinAccelerationAngle, m_pMaxAccelerationAngle); m_particles.push_back(ParticlePtr(new Particle(Rect(m_position + pPosition, pSize), -pVelocity * cos(pVelocityAngle), pVelocity * sin(pVelocityAngle), -pAcceleration * cos(pAccelerationAngle), pAcceleration * sin(pAccelerationAngle), pDuration, m_pColor, m_pTexture))); } } m_currentBurst = currentBurst; }