tibia-client/src/framework/graphics/particleemitter.cpp

275 lines
11 KiB
C++
Raw Normal View History

2011-12-15 19:39:57 +01:00
/*
* Copyright (c) 2010-2011 OTClient <https://github.com/edubart/otclient>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "particleemitter.h"
#include "graphics.h"
#include <framework/core/clock.h>
#include <framework/graphics/texturemanager.h>
#include <framework/util/tools.h>
Particle::Particle(const Rect& rect, float vx, float vy, float ax, float ay, float duration, const Color& color, TexturePtr texture)
{
m_rect = rect;
m_ix = rect.x(); m_iy = rect.y();
m_vx = vx; m_vy = vy;
m_ax = ax; m_ay = ay;
m_color = color;
m_texture = texture;
m_duration = duration;
m_startTicks = g_clock.ticks();
m_finished = false;
}
Particle::~Particle()
{
//dump << "deleted";
}
void Particle::render()
{
g_painter.setColor(m_color);
if(!m_texture)
g_painter.drawFilledRect(m_rect);
else {
//g_painter.setCompositionMode(Painter::CompositionMode_AdditiveSource);
g_painter.drawTexturedRect(m_rect, m_texture);
//g_painter.setCompositionMode(Painter::CompositionMode_SourceOver);
}
}
void Particle::update()
{
ticks_t t = g_clock.ticks() - m_startTicks;
// check if finished
if(m_duration >= 0 && t > m_duration * 1000) {
m_finished = true;
return;
}
//update position
m_rect.moveTo(m_ix + (m_vx * t / 1000.0) + (m_ax * t*t / (2.0 * 1000 * 1000)),
m_iy + (m_vy * t / 1000.0) + (m_ay * t*t / (2.0 * 1000 * 1000)));
}
ParticleEmitter::ParticleEmitter()
{
m_position = Point(0, 0);
m_duration = -1;
m_burstRate = 1; m_burstCount = 32;
m_currentBurst = 0;
m_startTicks = g_clock.ticks();
m_finished = false;
// particles default configuration. (make them reasonable for user detect missing properties on scripts)
m_pMinPositionRadius = 0; m_pMaxPositionRadius = 3;
m_pMinPositionAngle = -Fw::pi; m_pMaxPositionAngle = Fw::pi;
m_pMinSize = Size(32, 32); m_pMaxSize = Size(32, 32);
m_pMinDuration = 0; m_pMaxDuration = 10;
m_pMinVelocity = 32; m_pMaxVelocity = 64;
m_pMinVelocityAngle = -Fw::pi; m_pMaxVelocityAngle = Fw::pi;
m_pMinAcceleration = 32; m_pMaxAcceleration = 64;
m_pMinAccelerationAngle = -Fw::pi; m_pMaxAccelerationAngle = Fw::pi;
m_pColor = Color(255, 0, 0, 128);
m_pTexture = nullptr;
}
bool ParticleEmitter::load(const OTMLNodePtr& node)
{
for(const OTMLNodePtr& childNode : node->children()) {
// self related
if(childNode->tag() == "position") {
std::string value = childNode->value();
std::vector<std::string> split;
boost::split(split, value, boost::is_any_of(std::string(" ")));
if(split.size() == 2)
m_position = Point(Fw::safeCast<int>(split[0]), Fw::safeCast<int>(split[1]));
}
else if(childNode->tag() == "duration")
m_duration = childNode->value<float>();
else if(childNode->tag() == "burstRate")
m_burstRate = childNode->value<float>();
else if(childNode->tag() == "burstCount")
m_burstCount = childNode->value<int>();
// particles generation related
else if(childNode->tag() == "particle-position-radius") {
m_pMinPositionRadius = childNode->value<float>();
m_pMaxPositionRadius = childNode->value<float>();
}
else if(childNode->tag() == "particle-min-position-radius")
m_pMinPositionRadius = childNode->value<float>();
else if(childNode->tag() == "particle-max-position-radius")
m_pMaxPositionRadius = childNode->value<float>();
else if(childNode->tag() == "particle-position-angle") {
m_pMinPositionAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
m_pMaxPositionAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
}
else if(childNode->tag() == "particle-min-position-angle")
m_pMinPositionAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-max-position-angle")
m_pMaxPositionAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-velocity") {
m_pMinVelocity = childNode->value<float>();
m_pMaxVelocity = childNode->value<float>();
}
else if(childNode->tag() == "particle-min-velocity")
m_pMinVelocity = childNode->value<float>();
else if(childNode->tag() == "particle-max-velocity")
m_pMaxVelocity = childNode->value<float>();
else if(childNode->tag() == "particle-velocity-angle") {
m_pMinVelocityAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
m_pMaxVelocityAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
}
else if(childNode->tag() == "particle-min-velocity-angle")
m_pMinVelocityAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-max-velocity-angle")
m_pMaxVelocityAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-acceleration") {
m_pMinAcceleration = childNode->value<float>();
m_pMaxAcceleration = childNode->value<float>();
}
else if(childNode->tag() == "particle-min-acceleration")
m_pMinAcceleration = childNode->value<float>();
else if(childNode->tag() == "particle-max-acceleration")
m_pMaxAcceleration = childNode->value<float>();
else if(childNode->tag() == "particle-acceleration-angle") {
m_pMinAccelerationAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
m_pMaxAccelerationAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
}
else if(childNode->tag() == "particle-min-acceleration-angle")
m_pMinAccelerationAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-max-acceleration-angle")
m_pMaxAccelerationAngle = (childNode->value<float>() * Fw::pi / 180.0) - Fw::pi;
else if(childNode->tag() == "particle-duration") {
m_pMinDuration = childNode->value<float>();
m_pMaxDuration = childNode->value<float>();
}
else if(childNode->tag() == "particle-min-duration")
m_pMinDuration = childNode->value<float>();
else if(childNode->tag() == "particle-max-duration")
m_pMaxDuration = childNode->value<float>();
else if(childNode->tag() == "particle-size") {
std::string value = childNode->value();
std::vector<std::string> split;
boost::split(split, value, boost::is_any_of(std::string(" ")));
if(split.size() == 2) {
m_pMinSize = Size(Fw::safeCast<int>(split[0]), Fw::safeCast<int>(split[1]));
m_pMaxSize = Size(Fw::safeCast<int>(split[0]), Fw::safeCast<int>(split[1]));
}
}
else if(childNode->tag() == "particle-min-size") {
std::string value = childNode->value();
std::vector<std::string> split;
boost::split(split, value, boost::is_any_of(std::string(" ")));
if(split.size() == 2) {
m_pMinSize = Size(Fw::safeCast<int>(split[0]), Fw::safeCast<int>(split[1]));
}
}
else if(childNode->tag() == "particle-max-size") {
std::string value = childNode->value();
std::vector<std::string> split;
boost::split(split, value, boost::is_any_of(std::string(" ")));
if(split.size() == 2) {
m_pMaxSize = Size(Fw::safeCast<int>(split[0]), Fw::safeCast<int>(split[1]));
}
}
else if(childNode->tag() == "particle-color")
m_pColor = childNode->value<Color>();
else if(childNode->tag() == "particle-texture")
m_pTexture = g_textures.getTexture(childNode->value());
}
return true;
}
void ParticleEmitter::render()
{
for(auto it = m_particles.begin(), end = m_particles.end(); it != end; ++it)
(*it)->render();
}
void ParticleEmitter::update()
{
ticks_t elapsedTicks = g_clock.ticks() - m_startTicks;
// update particles
for(auto it = m_particles.begin(), end = m_particles.end(); it != end;) {
const ParticlePtr& particle = *it;
if(particle->hasFinished()) {
it = m_particles.erase(it);
continue;
}
particle->update();
++it;
}
// check if finished
if(m_duration >= 0 && elapsedTicks > m_duration * 1000) {
// stop emitting but only self remove when there are no particles left
if(m_particles.size() == 0)
m_finished = true;
return;
}
int currentBurst = elapsedTicks / 1000.0 / m_burstRate + 1;
for(int b = m_currentBurst; b < currentBurst; ++b) {
// every burst created at same position.
float pRadius = Fw::randomRange(m_pMinPositionRadius, m_pMaxPositionRadius);
float pAngle = Fw::randomRange(m_pMinPositionAngle, m_pMaxPositionAngle);
Point pPosition = Point(-pRadius * cos(pAngle), pRadius * sin(pAngle));
for(int p = 0; p < m_burstCount; ++p) {
Size pSize = Size(Fw::randomRange(m_pMinSize.width(), m_pMaxSize.width()), Fw::randomRange(m_pMinSize.height(), m_pMaxSize.height()));
float pDuration = Fw::randomRange(m_pMinDuration, m_pMaxDuration);
// particles initial velocity
float pVelocity = Fw::randomRange(m_pMinVelocity, m_pMaxVelocity);
float pVelocityAngle = Fw::randomRange(m_pMinVelocityAngle, m_pMaxVelocityAngle);
// particles initial acceleration
float pAcceleration = Fw::randomRange(m_pMinAcceleration, m_pMaxAcceleration);
float pAccelerationAngle = Fw::randomRange(m_pMinAccelerationAngle, m_pMaxAccelerationAngle);
m_particles.push_back(ParticlePtr(new Particle(Rect(m_position + pPosition, pSize),
-pVelocity * cos(pVelocityAngle), pVelocity * sin(pVelocityAngle),
-pAcceleration * cos(pAccelerationAngle), pAcceleration * sin(pAccelerationAngle),
pDuration, m_pColor, m_pTexture)));
}
}
m_currentBurst = currentBurst;
}